概 述
  
  我们公司运维着 15 个 Web 应用,主要的工作就是按需交付基于数据驱动的 Web 应用程序,用于支撑实时决策的制定。
  
  这些应用的预期是在高负载下依然保持高可用。其中的主 Web 应用是一个历史遗留的大型多服务系统。系统中的大部分服务都有超过 15 年的历史并且经过了好几代人的重构。试想一下,负责编写系统代码的人现在可能已经离职或已经调整到其他岗位了。
  
  过去几年我们团队的主要目标是就是针对这些服务进行性能优化。本次我将和你分享在性能优化的过程中,我们的一些主要经验总结和当时决定这么做的原因。
  
  认知改变时刻
  
  在某次事件中,用户增加了对我们应用的使用率,导致我们应用的数据流量大幅增加。在此事件过程中,用户抱怨我们的应用性能实在太差,以至于无法在应用上完成全套的业务流程。为此,我们开始利用监控工具分析应用的性能瓶颈。通过应用监控工具,我们发现服务在获取 DB 连接上消耗了 90% 的响应时间。
  
  但是 DB 看上去一切正常,所以,我们开始分析应用的 DB 连接池。分析发现,所有的 pod 将连接池中全部可用的连接都使用了。因此我们猜测服务在关闭连接上可能有问题。于是,我们花了几个小时时间检查代码,尝试找到连接没有被释放的地方。最终,我们的一个 TeamLeader 发现,pod 的存活探针在做一次简单的 DB 心跳请求之后没有释放 DB 连接。随后,我们立即在 pod 存活探针的请求中增加了一行用于释放 DB 连接的代码。影响是可怕的。眨眼间,应用的性能就开始稳定下来并且用户也恢复了正常使用。
  
  就在此次事件的前一天,我们才执行过一次负载测试,以确保应用程序能够承受预期的使用量增长,测试结果表明应用的性能是在正常范围内的。然而事实证明这个测试结论是错误的,错误的测试结论误导我们以为应用程序没有需要修复的问题。我们深刻认识到了错误,我们需要做得更好。以下是我们在此次事件中学习到的一些经验和总结。
  
   总结一:不要使用平均等待时长作为衡量服务负载的指标——核查应用的“尾部”值
  
  当用户抱怨应用响应慢的时候,我们发现平均等待时长指标并没有明显的变化。当我们回顾了这些指标数据的时候,注意到了一些有趣的事情:之前我们是将平均请求时间作为服务等待的主要指标,因此,这次我们将 90% 请求等待时长的数据做了一个图表,看看这个图表能不能反馈些信息。果不其然,在用户抱怨应用慢的时候,我们观察到图表中等待时长急剧增加。平均等待时长指标之所以没有明显变化,是因为太多的快速请求将平均值拉下来了。所以我的建议是,不使用平均等待时长,而使用 50%,90%,95%,99% 的平均等待时长作为服务响应的指标。核查那些远远超过正常值范围的“尾部”值是非常重要的。
  
  总结二:在性能优化上投入时间、工具和人力
  
  要保持应用的高性能,我们必须具备以下条件:
  
  负载测试和负载场景——具备可用的负载测试和负载场景非常重要。
  
  应用监控工具(APM)——诸如 Dyanatrace,AppDynamics 和 Epsagon 等工具。APM 在监控服务上可以帮我们节约大量的时间。因此在生产环境安装至少一个 APM 是非常有必要的。
  
  有效的日志——有效的日志是生产服务中断调查和性能问题调查的基本条件。因此你必须确保应用的日志是清晰且有用的。
  
  日志分析工具——你不能从很多文件中读取和搜索日志,尤其当你的服务是集群的时候,通过文件读取日志将变得更加困难。因此,花时间投产一个诸如 ELK,Grafana 或 Splunk 的日志收集器和分析工具是非常有必要的。
  
  专业的人力支撑——对于上面提到的知识或者工具,如果你的团队没有相关的专业人才,那么你将什么也干不了。
  
  因此,针对复杂的系统,我建议投入专门的人和时间来处理。(例如,SRE 团队就能很好的胜任此项工作)
  
  总结三:老系统将会消亡(除非我们激活它们)
  
  作为人类,我们都有创造新事物的冲动和欲望,并且对创造出来的产品有一种所有权感。在软件的世界里,在我们需要处理的矛盾中,有时候也会包含这样的矛盾。一方面,有一个老系统需要我们维护;而另一方面,有一个炫酷的新系统我们想要去开发。那么这个时候,我们就需要决定将时间投入到那块。当我们面对这样的矛盾时,我们必须记住,如果我们不继续在老系统上进行开发和添加新功能,那么对老系统的了解会随着时间的推移而消失。因此,当我们面对系统故障或客户新需求时,由于缺少对老系统的了解或者能力问题,将无法达成目标。换句话说,当我们失去对于老系统的了解之后,系统的 MTTR(平均修复时间) 上升了。
  
  因此,我的建议是,要时常克制想要创造一个新的、炫酷事物的冲动,将时间投入到对老维护系统的熟悉和提升解决问题的能力上。另外,保持对老系统熟悉度的最佳方式就是尝试在老系统中添加代码。
  
  结论四:每一行代码都很重要
  
  有时,当我们在编写代码的时候,我们可能会忘记这些代码最终运行将在生产环境中,并为一个真实用户的真实工作服务。上面提到的我们亲身经历的案例中,仅仅只是因为程序员忘记了释放 DB 连接(一行代码而已),就可以干扰一个用户的正常工作(那些工作受影响的用户估计很不愿意给我们付钱)。
  
  我的建议是:
  
  想象一下(虽然很难),在世界的另一端,某个用户的工作完全依赖你编写的代码,同时试想一下,你写的每一行代码都将影响其使用应用的体验。
  
  在 CI 或者 CD 环节执行负载测试。如果你想确保代码高可用,那么就针对每个即将投产的 PR 或版本都进行负载测试。
  
  当你发现性能问题的时候,请怀疑每一行代码——据我们的经验,代码中的每个字符都有可能是导致性能的瓶颈。

写评论

热门文章

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权, 不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 995315907@qq.com举报,一经 查实,本站将立刻删除。